Power Watershed: A Unifying Graph-Based Optimization Framework
نویسندگان
چکیده
منابع مشابه
Power Watersheds: A Unifying Graph Based Optimization Framework
In this work, we extend a common framework for graph-based image segmentation that includes the graph cuts, random walker, and shortest path optimization algorithms. Viewing an image as a weighted graph, these algorithms can be expressed by means of a common energy function with differing choices of a parameter q acting as an exponent on the differences between neighboring nodes. Introducing a ...
متن کاملA Preference Optimization Based Unifying Framework for Supervised Learning Problems
Supervised learning is characterized by a broad spectrum of learning problems, often involving structured types of prediction, including classification, ranking-based predictions (label and instance ranking), and (ordinal) regression in its various forms. All these different learning problems are typically addressed by specific algorithmic solutions. In this chapter, we propose a general prefer...
متن کاملUnifying SAT-based and Graph-based Planning
The Blackbox planning system unifies the planning as satisfiability framework (Kautz and Selman 1992, 1996) with the plan graph approach to STRIPS planning (Blum and Furst 1995). We show that STRIPS problems can be directly translated into SAT and efficiently solved using new randomized systematic solvers. For certain computationally challenging benchmark problems this unified approach outperfo...
متن کاملA Unifying Polyhedral Approximation Framework for Convex Optimization
We propose a unifying framework for polyhedral approximation in convex optimization. It subsumes classical methods, such as cutting plane and simplicial decomposition, but also includes new methods and new versions/extensions of old methods, such as a simplicial decomposition method for nondifferentiable optimization and a new piecewise linear approximation method for convex single commodity ne...
متن کاملA General Framework for Graph Optimization
Many popular problems in robotics and computer vision including various types of simultaneous localization and mapping (SLAM) or bundle adjustment (BA) can be phrased as least squares optimization of an error function that can be represented by a graph. This paper describes the general structure of such problems and presents go, an open-source C++ framework for optimizing graph-based nonlinear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2011
ISSN: 0162-8828
DOI: 10.1109/tpami.2010.200